金沙网上赌场官方网址-澳门网上赌场明天赌博

首頁 > 講座預告 > 正文

講座預告

首頁 > 講座預告 > 正文

【韶風名家論壇】Convexity, Sparsity, Nullity and all that … in Machine Learning

發布時間 : 2017-03-28 00:00    點擊量:

分享:
報告時間
講座類型
報告題目:Convexity, Sparsity, Nullity and all that … in Machine Learning
主 講 人:Hamid Krim,北卡羅來州立大學教授,IEEE Fellow 
 
報告人簡介:
  Hamid Krim, 現任美國北卡羅來納州立大學電子與計算機工程系教授,研究興趣為統計信號和圖像分析、應用問題的數學建模。Krim教授曾擔任AT&T貝爾實驗室、麻省理工大學研究專家;曾獲貝爾實驗室杰出成績獎,美國國家科學基金會職業成就獎。目前,Krim是IEEE Transactions on Signal Processing的副主編IEEE Signal Processing Magazine的編委會成員,SPTM和Big Data Initiative的程序委會員會成員,2008年成為IEEE Fellow,被評為2015-2016年IEEE SP Society Distinguished Lecturer。
 
報告摘要:
  High dimensional data exhibit distinct properties compared to its low dimensional counterpart; this causes a common performance decrease and a formidable computational cost increase of traditional approaches. Novel methodologies are therefore needed to characterize data in high dimensional spaces.
  Considering the parsimonious degrees of freedom of high dimensional data compared to its dimensionality, we study the union-of-subspaces (UoS) model, as a generalization of thelinear subspace model. The UoS model preserves the simplicity of the linear subspace model, and enjoys the additional ability to address nonlinear data. We show a sufficient condition to use l1 minimization to reveal the underlying UoS structure, and further propose a bi-sparsity model (RoSure) as an effective algorithm, to recover the given data characterized by the UoS model from non-conforming errors/corruptions.
  As an interesting twist on the related problem of Dictionary Learning Problem, we discuss the sparse null space problem (SNS). Based on linear equality constraint, it first appeared in 1986 and hassince inspired results, such as sparse basis pursuit, we investigate its  relation to the analysis dictionary learning problem, and show that the SNS problem plays a central role, and may naturally be exploited  to solve dictionary learning problems.
  Substantiating examples are provided, and the application and performance of these approaches are demonstrated on a wide range of problems, such as face clustering and video segmentation.
 
主持人:歐陽建權教授,湘潭大學信息工程學院副院長
時 間:2017年3月30日下午2:00
地 點:工科樓北樓201
 
歡迎廣大師生參加!
 
湘潭大學信息工程學院
智能計算與信息處理教育部重點實驗室
2017年3月28日

關閉

友情鏈接:

地址:中國湖南湘潭  郵編:411105

版權所有?湘潭大學 (湘ICP備18021862號-2) 湘教QS3-200505-000059

湘公網安備 43030202001058號    

三河市| 真钱百家乐官网送钱| 索雷尔百家乐的玩法技巧和规则 | 皇冠网网址| 百家乐官网免费注册| 索雷尔百家乐的玩法技巧和规则 | 百家乐官网破解辅助| qq百家乐网络平台| 慈溪市| 真人百家乐官网代理分成| 大发888娱乐城俄罗斯| 真人百家乐皇冠网| 百家乐官网假在哪里| 百家乐赌场娱乐城| 百家乐官网牌九| 博马百家乐娱乐城| 百家乐官网高科技| 真人百家乐官网分析软件是骗局| 网络百家乐免费试玩| 菲律宾百家乐娱乐| 德州扑克游戏大厅| 百家乐官网那个平好| 神州百家乐的玩法技巧和规则 | 百家乐官方网站| 百家乐官网乐城皇冠| 星期8百家乐官网娱乐城| 百家乐官网服务区| 百家乐官网半圆桌| 百家乐庄闲和游戏机| 和记娱乐| 新加坡百家乐官网规则| 大发888娱乐城英皇国际| 百家乐官网北京| 威尼斯人娱乐 老品牌| 百家乐官网投注平台信誉排行| 百家乐路单统| 永利百家乐官网娱乐平台| 镶黄旗| 致胜百家乐官网的玩法技巧和规则| 钱百家乐取胜三步曲| 百家乐官网园会员注册|