金沙网上赌场官方网址-澳门网上赌场明天赌博

首頁 > 講座預告 > 正文

講座預告

首頁 > 講座預告 > 正文

【韶風名家論壇】Convexity, Sparsity, Nullity and all that … in Machine Learning

發布時間 : 2017-03-28 00:00    點擊量:

分享:
報告時間
講座類型
報告題目:Convexity, Sparsity, Nullity and all that … in Machine Learning
主 講 人:Hamid Krim,北卡羅來州立大學教授,IEEE Fellow 
 
報告人簡介:
  Hamid Krim, 現任美國北卡羅來納州立大學電子與計算機工程系教授,研究興趣為統計信號和圖像分析、應用問題的數學建模。Krim教授曾擔任AT&T貝爾實驗室、麻省理工大學研究專家;曾獲貝爾實驗室杰出成績獎,美國國家科學基金會職業成就獎。目前,Krim是IEEE Transactions on Signal Processing的副主編IEEE Signal Processing Magazine的編委會成員,SPTM和Big Data Initiative的程序委會員會成員,2008年成為IEEE Fellow,被評為2015-2016年IEEE SP Society Distinguished Lecturer。
 
報告摘要:
  High dimensional data exhibit distinct properties compared to its low dimensional counterpart; this causes a common performance decrease and a formidable computational cost increase of traditional approaches. Novel methodologies are therefore needed to characterize data in high dimensional spaces.
  Considering the parsimonious degrees of freedom of high dimensional data compared to its dimensionality, we study the union-of-subspaces (UoS) model, as a generalization of thelinear subspace model. The UoS model preserves the simplicity of the linear subspace model, and enjoys the additional ability to address nonlinear data. We show a sufficient condition to use l1 minimization to reveal the underlying UoS structure, and further propose a bi-sparsity model (RoSure) as an effective algorithm, to recover the given data characterized by the UoS model from non-conforming errors/corruptions.
  As an interesting twist on the related problem of Dictionary Learning Problem, we discuss the sparse null space problem (SNS). Based on linear equality constraint, it first appeared in 1986 and hassince inspired results, such as sparse basis pursuit, we investigate its  relation to the analysis dictionary learning problem, and show that the SNS problem plays a central role, and may naturally be exploited  to solve dictionary learning problems.
  Substantiating examples are provided, and the application and performance of these approaches are demonstrated on a wide range of problems, such as face clustering and video segmentation.
 
主持人:歐陽建權教授,湘潭大學信息工程學院副院長
時 間:2017年3月30日下午2:00
地 點:工科樓北樓201
 
歡迎廣大師生參加!
 
湘潭大學信息工程學院
智能計算與信息處理教育部重點實驗室
2017年3月28日

關閉

友情鏈接:

地址:中國湖南湘潭  郵編:411105

版權所有?湘潭大學 (湘ICP備18021862號-2) 湘教QS3-200505-000059

湘公網安備 43030202001058號    

百家乐官网策略大全| 百家乐官网娱乐城棋牌| 多伦多百家乐官网的玩法技巧和规则| 南宁百家乐官网的玩法技巧和规则| 大杀器百家乐官网学院| 百家乐网上真钱娱乐| 百家乐官网路单破解方法| 百家乐注册送10彩金| 百家乐官网最好的玩法| 新濠百家乐官网娱乐场| 百家乐白菜价| 哪个百家乐网站信誉好| 大西洋城| 赌博百家乐官网经验网| 大发888游戏大厅下载| 巴彦淖尔市| 太阳城百家乐下载网址| 新全讯| 百家乐优博娱乐城| 博彩娱乐网| 百家乐玩法的技巧| 曼哈顿娱乐城信誉| 百家乐官网网上真钱娱乐网| 易发棋牌游戏| 杨筠松 24山 土| 百家乐官网赌神| 澳门百家乐真人版| 宁安市| 皇家百家乐官网的玩法技巧和规则| 德州扑克 在线| 半圆百家乐桌子| 铜山县| 蓝盾百家乐的玩法技巧和规则| 百家乐官网游戏| 7m足球比分| 百家乐平预测软件| 伯爵百家乐官网的玩法技巧和规则 | 大发888娱乐平台 游戏| 百家乐官网路珠价格| 百家乐波音独家注册送彩| 我的做生意财位|